

CII Award for Excellence in Energy Management – Metal Sector Bharat Aluminium Company Limited

Sep'24

- Arvindh Ravindran- (Manager)
- Mukesh Kumar- (Dpty. Manager)
- Kariveda Sreekanth (Asst. Manager)

Vision : To be a World Class Integrated Aluminium & Power Producer Generating Sustainable Value for All Stakeholders

- Sharat Aluminium Company (BALCO) has made significant contributions as the 1st PSU in India's Aluminium sector Incorporated in 1965, BALCO is India's first integrated Aluminium business.
- One of the first disinvestments of the Government of India. It now a part of Vedanta Limited, with 51% stake held by Vedanta Limited and 49% held by Government.
- Balco is based in Chhattisgarh State having Captive Bauxite mines in Mainpat and Kawardha, Captive coal mines in Chotia, 2010 MW power generation capacity and 5.7 LTPA Aluminium Smelting capacity at Korba Complex.
- Balco produces Wire Rods, Ingots, Alloy Rods, Alloy Ingots and Rolled Products. Balco is also selling Power to State Utilities & own sister concerns.
- Balco has been India's first to have Captive Power Plant, to venture into +300 kA Prebake pots, to produce Alloy Rods for conductors used in power transmission industry, to roll material for Aerospace Industry, online riser replacement, busbar insulation in Pot Room, single beam implementation and holds patent for aluminium cell fuse technology.
- BALCO is currently in installation of a +500 KA smelter Potline first of its kind in INDIA expected to come in to operation from Feb-Mar'25

Pot line Process Flow

Thermal Electrical

 $2 \text{ Al2O3 (dissolved)} + 3C(s) \longrightarrow 4Al(l) + 3CO2(g)$

Specific Energy Consumption – Product wise

ENERGY CONSUMPTION REDUCTION (FY 24) :

- Reduce Net AC Power consumption for Potline-1 (13587 KWH/MT to 13504 KWH/MT) - 83 kWh MT Potline-2 (13817 KWH/MT to 13728 KWH/MT) - 89 kWh/MT BALCO (13713 KWH/MT to 13627 KWH/MT) - 84 kWh/MT
- Reduce Auxiliary Power Consumption of Potline-1 from 427 to 408 KWH/MT- 19 kWh/MT Potline-2 from 480 to 470 KWH/MT – 10 kWh/MT BALCO from 456 to 442 KWH/MT – 14 kWh/MT

ENERGY OBJECTIVES (Vision FY25)

- Reduce Net Ac Power consumption 13500 kWh/MT of Al
- Reduce Auxiliary Power Consumption 430 kWh/MT

****** Balco will be a benchmark in Indian & GULF smelters with regards to DC Specific Power Consumption

Specific Energy Conservation Journey (TOE/TONNE)

SN	Major Projects / Action Plan for Vision FY 25	Power Saving	Unit	Target Completion
1	Increase in Pot line Current Efficiency from 94.98% to 95.30 %.	0.004	TOE/TON	Mar-25
2	Anode drop reduction	0.002	TOE/TON	Mar-25
3	Increase low energy consumption Copper cathode pots from 1% to >5%	0.002	TOE/TON	Mar-25
4	Auxillary Power reduction by PL1 FTP alumina Airlift	0.001	TOE/TON	Mar-25
5	Pot Controller upgradation	0.001	TOE/TON	Mar-25
6	Anode Stub hole Former - New Design to implement.	0.0009	TOE/TON	Feb-24
7	Improvement in ER from 58.06 (FY 23) to 56.5%.	0.0009	TOE/TON	Mar-25
8	Anode Slot Height Improvement from 237 to 260 mm & Anode Stub hole Former - New Design	0.0009	TOE/TON	Mar-25
9	Reduction in Aux power Consumption	0.0006	TOE/TON	Mar-25

lajor Energy Conservation Projects-2022 & 2023

S.No	Title of Project	Annual Energy Saving Million KWH	Investment Million INR
1	120 (PL 1 : 43 pots & PL 2 :77 pots,) 100% graphitized pots installation & Normalization	82.7	1440
2	Reduction in Sp Aux consumptions by 15 kwh/mt (Mar'21 : 454 to BP21 - 440)	1.13	NIL
3	Idle running hours reduction of roller conveyors(10 conveyors)	0.01	NIL
4	Cast House Reduction in compressed air consumption	0.22	NIL
5	GAP Throughput Increment	0.04	NIL
6	Led Replacement	0.66	2
	TOTAL (ROI- 15 Months)	84.76	1442

S.No	Title of Project	Annual Energy Saving Million KWH	Investment Million INR
1	110 (PL 1 : 14 pots & PL 2 :37 pots,) 100% graphitized pots installation & Normalization	6.3	510
2	Reduction in Sp Aux consumptions by 15 kwh/mt	4.8	65
3	Gap process Optimization	0.05	NIL
4	Cast House-Reduction in compressed air consumption	0.79	NIL
5	Cast Replacement of hot-well pump with lower rating of pump	0.7	2
5	TOTAL (ROI- 18 Months)	13	579

Major Energy Conservation Projects-2024

S.No	Title of Project	Annual Energy Saving Million KWH	Investment Million INR
1	Anode Stub hole Former - New Design to implement.	11	NIL
2	Process optimization in Potline (High CVD Pots Optimization & Reduction in high voltage pots).	12	NIL
3	Increase in Pot line Current Efficiency from 94.89% to 95.30 %.	56	NIL
4	Improvement in ER from 58.06 (FY 23) to 56.5%.	11	NIL
5	100% graphitization of Pots from the level of 98%.	5	49
6	Anode voltage drop reduction	11	6
7	Reduction in Aux power Consumption	11	70
8	Anode Slot Height Improvement from 237 to 260 mm & Anode Stub hole Former - New Design	0.3	NIL
9	New design Cathode development	5	70
10	cast House-Close loop system , Trimming CW Pump impeller & Colling Tower	0.2	1
	TOTAL (ROI- 18 Months)	94.5	196
Veda	nta Limited, Aluminium - BALCO 7		

S.No	Projects under progress for FY25	Annual Energy Saving Million KWH	Investment Milln. INR
1	Increase in Pot line Current Efficiency from 94.98% to 95.30 %. (Process + PC Upgradation)	34	NIL
2	Anode drop reduction	18	330
3	Increase low energy consumption Copper cathode pots from 1% to >5%	12	117
4	Auxilary Power reduction by PL1 FTP alumina Airlift	7	63
5	Pot Controller upgradation direct power saving	7	32
6	Anode Stub hole Former - New Design to implement.	7	4.5
7	Improvement in ER from 58.06 (FY 23) to 56.5%.	7	NIL
8	Anode Slot Height Improvement from 237 to 260 mm & Anode Stub hole Former - New Design	7	6
9	Reduction in Aux power Consumption	7	70
10	Process optimization in Potline (High CVD Pots Optimization & Reduction in high voltage pots).	6.5	NIL
11	Auxilary Power reduction by Alumina conveyor system	5.2	72
12	Auxilary Power reduction IFC installation	3	147
	Expected ROI - 11 Months	120.7	841.5

Roadmap for 13000 SPC (Potline)

Roadmap for SPC

Vedanta Limited, Aluminium - BALCO | 9

Aluminium Business

vedanta transforming elements

Objective	 Implementation of Copper collector bar Cathode pots ,Balco with following benefits ✓ Increase in Current efficiency. ✓ Reduction in specific DC energy consumption. ✓ Increase in Pot life.
Approach	 ✓ 2 Pots Trial pots installed in PL-1 & 3 Pots in PL-2, which are highly successful. ✓ Lowest voltage and lowest power consumption achieved in those trial pots. ✓ Pots are more stable & having lesser Alf3 consumption.

ATA.

666

Objective Fo	4000KWhr/MT of AL. It is thereby necessary to explore all possibilities to control the consumption and reduce Carbon ootprint. Power consumption of potline is measured thus OC Energy consumption= Gross Voltage(in V)/CE%*Kh of Al prod./ <u>hr</u> *KA
Approach Va	Reduction of Voltage by even 1mV/Cell will give a huge margin to reduce Power consumption by 3.3 Units. Voltage is equired in aluminum production to drive the current through the reduction cell. In practical application its seen that oltage required to run the reduction cell is more than the theoretical value. This is mainly to overcome various losses and resistance of mediums involved in the electrolytic cell. One such huge scope is in Anode voltage Drop. farious drops in the total Anode Drops are Clamp drop, Stem to Clad, Clad to Stub, Stub to Carbon, carbon drop. This

Benchmarking and scope Identification

Anode drop bifurcation	Voltage Drop - BALCO	Benchmarking	Smelter	Scope of Improvement	Contribution
Anode clamp drop	18	14	VAL,J	-4	6%
Stem to Clad drop	28	8	Hirakund	-20	28%
Clad to Stub	20	10	Hirakund	-10	14%
Stub to Carbon drop	85	55	Alba	-30	42%
Carbon Drop	257	250	Hillside	-7	10%
Total Anode Drop	408			-71	

While benchmarking, Anode Stem-Clad, Anode Stub-carbon drop were found to have a huge scope for improvement

By increasing the cross-sectional area of Anode stub Net conductive surface area
increases, there by reducing the resistance of the Anode drop. More precaution
were taken to ensure that there is no failure of Anode due to excess stress
released by increased stub diameter.

Anode prepared	Anode placed	STC date	Number of anodes	TRIAL #	Trial Phases	STUB 1	STUB 2	STUB 3	STUB 4	STEM TO CARBON	Avg Stub To Carbon (mV)	Effective STC Rdtn. (mV)	Effective ness
					PL2 Avg STC of last 6 months	93	90	89	79	137	88		
12-Jan-24	17-Jan-24	22-Jan-24	10	TRIAL 1	150 mm dia stub avg in trial anodes	81	82	72	63	122	75	75	Success
			3		150 mm dia stub in all 4 stubs	98	79	70	56	122	75	75	Success
	21-Feb-24	26-Feb-24	10	TRIAL 1B	150 mm dia stub avg in trial anodes	74	66	71	61		68	68	Success
			3		150 mm dia stub in all 4 stubs	72	67	66	60	117	66	66	Success
	24-Mar-24	28-Mar-24	8	TRIAL 1C	150 mm dia stub avg in trial anodes	86	78	86	66		79	79	Success
1st Jun-12 Jun 2024	14 Jun to till sec	date in one tion	180	Scale - Up	Implementation Phase of stepped stub anodes	76	80	77	63	124	74	-14	Gain

Trial -2: Inference and Trend (Drop reduction by air resistance reduction between stub and carbon vedanta

<u>Results :</u>

Nails reduces the voltage drop impact due to Air resistance between stub to Cast iron and Cast Iron to Anode block.

10-12mV reduction of Anode Drop will impact 30-33 Unit in Power reduction of Potline (Cost Saving 7.6 INR Cr/year)

No major abnormality w.r.t. Anode stem structure or transition joints were seen.

All trial Butts were found in good shape and compared to their reference. This year phase 2 of the trial was incorporated in trial at several other locations of anode and in automation of anode nailing under progress to improve the efficiency of nailing anodes.

Rodding Grey-CI to PI composition benchmarking

Table 1. Chemical composition of Cast Alloys

	C	Si	Mn	Р	S	Cu
Low-P gray iron (LPGI)	3.50	2.52	0.66	0.03	0.02	-
High-P gray iron (HPGI)	3.50	2.60	0.62	0.71	0.09	-
Ferrite ductile iron (FDI)	3.58	2.59	0.11	0.04	0.01	-
Pearlitic ductile iron (PDI)	3.63	2.16	0.36	0.02	0.01	0.71

BALCO COMPOSITIONS	C	Mn	Р	S	Si	C.E
Pig iron avg Composition	3.77	0.28	0.11	0.05	1.38	4.27
Last 12 months avg Cl comp	3.54	0.68	0.06	0.33	2.80	4.49

- Our average PI sample composition is very well matching with FDI which has the lowest ever resistivity next to steel.
- It has an added advantage of marginally higher C% and P% which helps increase flowability and improved dimensional

clarity of Cl	STUB 1	STUB 2	STUB 3	STUB 4	STEM TO CARBON Drop	Stub To Carbon drop avg (mV)
Pig Iron Anodes (trial)- Dec'22	81	86	83	66	135	79
Pig Iron Anodes (trial)- May'23	81	84	79	63	135	77
Pig Iron Anodes (trial)- Feb'24	82	82	73	61	133	74
PL2 Avg STC of last 12 months	91	87	84	89	144	88

There are 3-4 times these PIG IRON casting are segregated and their AVG STC are measured at different time periods. Every time, Avg. STC drop of PIG IRON casting was found lesser by 10~14mV.

We have undertaken various initiatives to reduce our carbon footprint-

- \checkmark Implementation of **Graphitised cathodes in smelter** Saving of 880 tCO_{2eq}.
- \checkmark Introduction of indigenously developed **Copper insert cathode** in smelter Saving of 0.42 tCO₂/MT Al.
- ✓ The trial development of **Pot Controller Upgradation** in smelter- Expected Savings of 150 KWh/MT.
- ✓ The adoption of **Biomass** cofiring in TPP's– Saving of 19766 tCO_{2eq}
- ✓ Conversion of **EV Forklifts** reduced a total of **246 tCO_{2eq}** emissions during FY 2024.
- ✓ Substitution of HFO with **LSHS** -in the metal processing areas.
- ✓ RE Power procurement 179.91 MU -127735 tCO_{2e.}

Environment Management Initiatives

Specific Water Consumption (KL/MT)

Plantation Drive											
Year	Planted	Survived	Survival %								
2016-17	30000	25000	85								
2017-18	5000	4500	82								
2018-19	5000	4500	80								
2019-20	15000	12000	86								
2020-21	10000	8000	84								
2021-22	15000	14500	87								
2022-23	123562	113677	86								
2023-24	85111	74047	87								

Designated Consumer under PAT scheme for Aluminum Sector. PAT cycle -1 target over-achieved by 0.088 TOE (awarded 22203 EScerts).

Balco has topped in PAT Cycle-2 in Aluminium Sector across India. Highest no of Energy certified - 4.24 Lakhs

National Benchmark for specific DC energy specific power in Potline-1

Particulars	UOM	PAT Cycle -2
Notified baseline SEC (Period 14-15)	TOE/MT	5.3967
Notified target SEC	TOE/MT	5.0275
SEC Target for Reduction	TOE/MT	0.3692
Energy Certificates achieved	Nos.	424421

Decarbonization – Approach – BALCO

Decarbonisation power generation and the deployment of carbon capture utilisation and storage (CCUS), RE Power procurement Biomass cofiring, etc., offer the most significant opportunity to reduce emissions to near zero by 2050

Energy Efficiency to reduce smelting energy consumption and technologies to reduce the process emissions from smelting operation such as Cupper inserted cathodes, Pot controller upgradation., etc.

Emissions from fuel combustion can be reduced by electrification, fuel switching to Natural gas and **CCUS** offer the most credible options to reduce **GHG** emissions

Another important decarbonization lever for Aluminum Sector is – Recycling

Renewable Energy

- Achieved highest ever RPO obligation in FY 23 : 100% In FY 23, we have purchased RE power (i.e 546 MU) when there was coal scarcity in PAN India level
- In FY 24, we have purchased 45% of RE power (i.e 179.91 MU).
- Balco a unique entity in the country which can simultaneously export and import of power. This has given freedom to Balco to purchase RE power as per the requirement without restricting its export of power, this has laid to tremendous scope of sourcing RE power which would result in reduction of carbon footprint, thereby laying a strong foundation for our journey towards Net zero carbon and production of green aluminium.
- ▶ 505 MW RE mix tie up for BALCO Smelter operation to be completed by FY-26.

Renewable Energy – BIOMASS COFIRING

- > Biomass Pilot Trial taken successfully at BALCO. Co-firing 4.755 KT biomass has been fired in FY-23
- Adoption of biomass co firing in our coal-based power plant; highest ever Biomass consumption : ~ 13 KT in FY- 24. Corresponds to Energy saving 16.7 MU, Saving of 19.766 K.Tons of CO_{2eq}

GHG Inventorisation

Year	Scope-1 Emission KG CO2/Ton	Scope-2 Emission KG CO2/Ton	Total Kg CO2/Ton
FY-15	21	2.3	23.3
FY-16	18.3	0.2	18.5
FY-17	18.87	0.03	18.9
FY-18	17.32	0.27	17.59
FY-19	17.38	0.05	17.43
FY-20	17.79		17.79
FY-21	17.29		17.29
FY-22	16.75	0.26	17.03
FY-23	15.44	0.81	16.26
FY-24	15.22	0.8	16.02

Table 4: Scope 3- Inventory Group (Category Wise) Total Scope 3 Emissions (tCO2e)	Year	Scope-3 Emission KG
Category 1- Purchased Goods and Services		
Category 2- Capital Goods		
Category 3- Fuel and Energy Related	FY-21	3
Category 4- Upstream Transport	FY-22	3.15
Category 5- Waste in operations		
Category 6- Business Travel	FY-23	3.51
Category 7- Employee Commute	EV 24	
Category 9- Downstream Transport	F1-24	3.07

Plan for E-Vehicle

- 1. OPEX model-having plan to Change Battery Operated vehicle for shorter distance movement., Transportation cost reduction in longer term as right sizing led to 40% Annual CO2 release amount is 3470000 Kg Co2 approximately per year which can replaced by use of E-vehicle
- 2. E-vehicle Policy for all employees 50% discount on 2-Wheeler & 30% on 4-Wheeler to promote.

Waste to Wealth

SOURCE	FY23 (In Crs.)	FY24 (In Crs.)	FY25 YTD (In Crs.)
MS SCRAP	18.0	53.6	16.9
DROSS	7.6	2.9	0.0
OTHERS	6.4	61.0	20.0
COKE DUST	6.0	3.4	2.3
NET WEALTH from WASTE	38.0	120.9	39.2

Used Oil sellout – 68.63 MT in FY24

3224 MT/year Co-processing at M/s Green-mech Technology SPL ,SPL Utilization- (FY-23 21721 MT) (FY-24 36640 MT)

Al Dross Annual Generation 6963 MT

Maximising Al recovery by increasing utilisation of DPM to 95%

Achieved Melt loss 0.45 %

Further reduction target- 0.35%

Install and Operate DPS which can recover metal of approx. 30-35% from hot Dross Processing

Green Supply Chain & Ongoing Plans with Various Vendors

SN	Initiatives	Savings IN Rs			
1	Smart logistics for vehicles	60 Lakh/Year			
2	EV vehicle in operation				
3	Availability of LCM machine	8 Lakhs			
4	Reduction in Ladle Dispatch cost	5 Lakhs			

Implementation of Best Practices

Idea Portal & !DEA@BALCO APP for generation of ideas for All Balco & Contract employees.

- ➢ Idea generated FY23 −4403
- Idea accepted FY23 –2201
- Idea implemented FY23– 1668
- Idea under implementation FY23 566

Sl. No.	Name of the Vendor	Description of the Collaboration / energy reduction initiative
1	SGL	For energy efficient cathodes
2	GAMI & AP	Pot controller upgradation
3	SKF	For energy efficient bearing & V-belts
4	EESL	Energy Efficient Motor replacement
5	Atlas Copco	Compressed Air Audit

6 Energy Audit Mott Macdonald

GreenCo Scoreband - Bharat Aluminium Company Ltd, Korba								Greet							
DADAMETEDC	POINTS AWARDED														
PARAMETERS	0-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100	101-110	111-120	121-130	131-140	141-150
Energy Efficiency													X		
Legends	[Points	scored b	y BALCO			ХМа	aximum j	points sco	ored by an	other Gre	enCo com	pany	

Green-co Silver certification

Learning From CII & Other Energy efficiency Program

- Benchmarking Data.
- Energy management system.
- Global Energy efficient technology.
- Waste to wealth creation idea.
- Cooling tower modification Efficiency improvement
- Closed loop Implementation in Pump Houses.
- Compressor House Air line Interconnection HP & LP line
- ESCO model for financing.

Energy Policy & Certifications

#	Description	Certification
1	Quality management system	ISO 9001:2015
2	Environment Management System	ISO 14001:2015
3	Occupational Health & Safety Management System	ISO 45001:2018
4	Energy Management System	ISO 50001:2011
5	Asset Management System	ISO 55001:2014
6	Quality Management System for the automotive industry.	IATF 16949
7	Information Security Management System(ISMS)	ISO/IEC 27000:2013
8	NABL accredited Lab	ISO 17025:2005
9	Social Accountability	SA8000

Creating Awareness Among Stakeholders

Review Mechanism

Energy savings from Employee & Stakeholder Involvement

Details	Unit	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24
Energy Savings	Kwh	26892304	59584971	25367013	31381627	8,48,70,225	8,42,25,659	13207980	39290000
Benefits due to energy savings	Rs. lacs	806	1788	887	1098	2907	2378	726	1768

Status of EnMS (ISO 50001) Audit Observation

Year	No. of NC	No. of Observation	Open NC	Open Observation
17-18	0	6	0	0
18-19	0	5	0	0
19-20	0	3	0	0
20-21	0	2	0	0
21-22	0	2	0	0
22-23	0	2	0	0
23-24	0	0	0	0

%Investment for Major Energy conservation projects on Turnover

FY	Project Description	Investment (Rs. Crs)	Turnover (Rs. Crs)	% Investment on Turnover	ROI(Months)
FY-20	100% Graphitized Cathodes	138	10500	1.3	18
FY-21	100% Graphitized Cathodes	101	9688	1.04	18
FY-22	100% Graphitized Cathodes	147	13607	1.08	15
FY-23	100% Graphitized Cathodes	57.9	12680	0.45	18
FY-24	Cathode development, Anode Modification & Aux power	13.1	13607	0.09	15
FY-25	Pot-controller Upgradation ,New Relining design	25.2	13067	0.20	18

NET ZERO PLAN & GHG intensity Reduction

Aroo	Kov Initiativa	Business	Saving (TCO2/T)		Timolino	Investment	Cost Benefit	
Alea		Partner	FY26	FY30	Timeime	(Mn\$)	(Mn\$/ <u>Yr</u>)	
Renewable	 Hybrid Phase-I (380 MW) at BAL 	Serentica	0.7	0.7	Sep'24	59	13	
Energy	 Hybrid Phase-II (155 MW) at BAL 	Serentica	0.2	0.3	Jun'25	24	5	
Technology	Pot controller	Alpsys	0.06	0.11	Mar' 27	21	5	
lechnology	 Graphitization/ Upgraded Relining 	COBEX	0.05	0.19	Mar' 30	48	12	
Alternate Fuel	 Bio mass Co-firing in Power plant (5 -10 %) 	-	0.14	0.57	Sep'26	-	-	
	Total		1.65	5.37		455	102	

SI No	Particulars	UoM	FY21	FY23	FY24	FY26	FY30	FY40	FY50
1	Production	MnT	0.6	0.57	0.58	0.78	1.02	1.02	1.02
	% Increase from FY21	%		-6%	-3%	30%	71%	71%	71%
2	Absolute Emission	MnT	10.3	9.2	8.9	15.6	11	6.8	2
3	Intensity	TCO2/T	17.21	16.26	15.34	15.26	11	6.7	2.2
	% Reduction from FY21	%		6%	11%	11%	37%	61%	87%
4	Renewable Energy (RTC)	MW	0	62	65	500	700	1000	1800
	Mix	%	0%	7%	7%	30%	45%	63%	95%
5	Green Aluminium	кт	0	0	42	100	300	600	1000

Vedanta Limited, Aluminium - BALCO | 27

Our decarbonization roadmap

Table 3: Phase wise action plan for GHG intensity reduction						
FY 2025	FY 2030	FY 2035	FY 2040	FY 2050		
Increasing potline energy	Biomass	Commencement	Continue shift to	100% of anode		
efficiency through pot	co-firing up to	of inert anodes	inert anodes and	to be inert		
graphitization, smart pot	5% in 135 MW	and wetted	Wettable	anodes and		
controllers, ready to use	power plants at	cathode usage	cathodes	cathodes to be		
cathodes, voltage reduction	BALCO and	at our smelters		weighted		
and auxiliary power reduction.	Jharsuguda		Explore hydrogen	cathode		
	respectively	Commence	fuel for calciner			
Power plant efficiency		Battery backup	at alumina	100 % power		
improvement through annual	Total 1500 MW	for storing the	refinery	from RE power		
overhauling and capital	of renewable	RE power at		at smelters		
overhauling, variable frequency	power purchase	operations.				
drives (VFD) on auxiliary	for our smelter					
pumps and fans.	at JSG & BALCO.	Additional				
		renewable power				
Shift calciner operations from	Natural gas at	capacity for our				
oil to natural gas at our	our BALCO and	smelter.				
alumina refinery.	Jharsuguda					
	plants at Cast					
Enter into PDA and use of 200	house & back					
MW and 180 MW renewable	oven plant.					
power for our aluminium	MoU & pilot trial					
smelters at BALCO and	of inert anodes					
Jharsuguda plants	and wetted					
respectively.	cathode usage					
	at our smelters					

BALCO | Awards & Accolades

BALCO | Awards & Accolades

ASSOCHAM's 3rd Menstrual Hygiene Management Awards & Conference 2024

TITAN International Business Awards 2024

2024

ICC Social Impact Awards 2024

Month	Award	Category	Agency
Apr'24	BALCO's Project Arogya conferred at ICC Social Impact Awards 2024	CSR	ICC
May'24	BALCO's Project Nayi Kiran conferred at ASSOCHAM's 3rd Menstrual Hygiene Management Awards & Conference 2024	CSR	ASSOCHAM
`May'24	Balco Wins "GEEF Global Road Safety Awards 2024"	safety	Global Energy and Environment Foundation
May'24	BALCO bags the Best Total Quality Management (TQM) Organization Award	Employee Engagement	QCFI
June'24	BALCO conferred with GOLD Winner - TITAN International Business Awards 2024	HR	TITAN
June'24	BALCO's Project Nayi Kiran conferred at ASSOCHAM's 3rd Menstrual Hygiene Management Awards & Conference 2024	CSR	ASSOCHAM

Thank You!

Sensitivity: Public (C4)

S.No	Title of Project	Annual Energy Saving Million KWH	Investment Million INR
1	110 (PL 1 : 14 pots & PL 2 :37 pots,) 100% graphitized pots installation & Normalization	6.3	510
2	Reduction in Sp Aux consumptions by 15 kwh/mt	4.8	65
3	Gap process Optimization	0.05	NIL
4	Cast House-Reduction in compressed air consumption	0.79	NIL
5	Cast Replacement of hot-well pump with lower rating of pump	0.7	2
6	LED Replacement	0.36	2
	TOTAL (ROI- 18 Months)	13	579

Renewable Energy

- > Biomass Pilot Trial taken successfully at BALCO. Co-firing **4.755 KT biomass has been fired in FY-23**
- Adoption of biomass co firing in our coal-based power plant; highest ever Biomass consumption : ~ 13 KT in FY- 24. Corresponds to Energy saving 16.7 MU, Saving of 19.766 K.Tons of CO_{2eq}

5% Biomass Co-firing at BALCO

